Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

P. Gougeon* and P. Gall

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042
Rennes Cedex, France
Correspondence e-mail:
patrick.gougeon@univ-rennes1.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Mo}-\mathrm{O})=0.003 \AA$
R factor $=0.031$
$w R$ factor $=0.073$
Data-to-parameter ratio $=31.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{CaMo}_{5} \mathrm{O}_{8}$

$\mathrm{CaMo}_{5} \mathrm{O}_{8}$ (calcium pentamolybdenum octaoxide) crystallizes in the space group $P 2_{1} / c$ and belongs to the $\mathrm{LaMo}_{5} \mathrm{O}_{8}$ structure type. Its crystal structure consists of $\mathrm{Mo}_{10} \mathrm{O}_{18}$ cluster units, interconnected through Mo-Mo bonds of $2.7669 \AA$ to form infinite molybdenum oxide chains. These are interconnected through $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bonds to create four-sided channels, in which the Ca^{2+} cations are located.

Comment

Among the reduced molybdenum oxides, the $A \mathrm{Mo}_{5} \mathrm{O}_{8}(A=$ $\mathrm{Ca}, \mathrm{Sr}, \mathrm{Pb}, \mathrm{Sn}, \mathrm{Eu}, \mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$ and Gd) compounds constitute an interesting family, because they can tolerate a change in the number of electrons available for $\mathrm{Mo}-\mathrm{Mo}$ bonding (often called metal-centred electrons or MCE), induced by the valence of the A cation, without a significant change in the basic structure. Consequently, various electrical behaviours are observed as a function of the MCE. If we exclude the Ca compound, all other compounds were obtained as single crystals that allowed studies of the variation of the Mo-Mo and Mo-O distances with respect to the size of the cation and the MCE. $\mathrm{CaMo}_{5} \mathrm{O}_{8}$ was first mentioned by Torardi \& McCarley (1981) and the structure was refined using powder data by Steiner \& Reichelt (1997). Comparison of various interatomic distances found in $\mathrm{CaMo}_{5} \mathrm{O}_{8}$ by Steiner \& Reichelt (1997) with those of the compounds $A \mathrm{Mo}_{5} \mathrm{O}_{8}$ with divalent A elements, the structures of which were determined

Figure 1
Fragment of a bioctahedral cluster chain of $\mathrm{CaMo}_{5} \mathrm{O}_{8}$. Displacement ellipsoids are drawn at the 97% probability level. Mo-Mo bonds longer than $2.9 \AA$ are not shown.

Received 14 May 2002 Accepted 10 June 2002 Online 29 June 2002

Figure 2
View of $\mathrm{CaMo}_{5} \mathrm{O}_{8}$ along [100].
from single-crystal data, showed large differences. In particular, unexpected $\mathrm{Mo}-\mathrm{O}$ distances up to $2.4 \AA$ are observed, leading to a mean value of 2.087 A , inconsistent with the values of $2.062,2.064$ and $2.061 \AA$ found in $\mathrm{SrMo}_{5} \mathrm{O}_{8}$, $\mathrm{SnMo}_{5} \mathrm{O}_{8}$ and $\mathrm{PbMo}_{5} \mathrm{O}_{8}$, respectively. On the other hand, an overall displacement parameter was used in their refinement. Consequently, we found it necessary to refine the structure of $\mathrm{CaMo}_{5} \mathrm{O}_{8}$ from single-crystal data. Our model presents s.u. values about ten times lower for the bonds and all atoms were refined anisotropically. Contrary to the results of Steiner \& Reichelt (1997), our results agree perfectly well with the previous refinements made on single crystals of $\mathrm{SrMo}_{5} \mathrm{O}_{8}$ (Gall \& Gougeon, 1994), $\mathrm{SnMo}_{5} \mathrm{O}_{8}$ (Gougeon et al., 1990) and $\mathrm{PbMo}_{5} \mathrm{O}_{8}$ (Dronskowski \& Simon, 1989; Dronskowski et al., 1991). Thus, the various Mo-O distances are now similar to those of $\mathrm{SrMo}_{5} \mathrm{O}_{8}, \mathrm{SnMo}_{5} \mathrm{O}_{8}$ and $\mathrm{PbMo}_{5} \mathrm{O}_{8}$, with an average value of 2.061 A . The $\mathrm{Mo}-\mathrm{Mo}$ distances are also close to those reported for $\mathrm{SrMo}_{5} \mathrm{O}_{8}$. This corroborates previous studies that show that the size of the cation has little effect on the Mo-Mo bonds for a given MCE (Gall, 1993). The intercluster Mo1-Mo1 distance which reflects the MCE is now 2.7669 (13) \AA and thus close to the value of 2.7651 (9) \AA observed in $\mathrm{SrMo}_{5} \mathrm{O}_{8}$ (Gall \& Gougeon, 1994), instead of 2.81 (1) \AA for the model of Steiner \& Reichelt (1997).

Experimental

Single crystals were obtained by heating a stoichiometric mixture of starting materials $\mathrm{CaMoO}_{4}, \mathrm{MoO}_{3}$ and Mo in a sealed molybdenum crucible at ca 2220 K for 15 min . The crucible was then cooled at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$ to 1300 K and finally furnace-cooled to room temperature.

Crystal data
$\mathrm{CaMo}_{5} \mathrm{O}_{8}$
$M_{r}=647.78$
Monoclinic, $P 2_{1} / c$
$a=7.550$ (5) A
$b=9.068(5) \AA$
$c=9.983$ (5) \AA
$\beta=110.07$ (4) ${ }^{\circ}$
$V=642.0$ (6) \AA^{3}
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.755, T_{\text {max }}=1.00$
4174 measured reflections
3965 independent reflections
2812 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.073$
$S=1.05$
3965 reflections
128 parameters

Table 1
Selected interatomic distances (\AA).

$\mathrm{Ca}-\mathrm{O} 1^{\text {i }}$	2.394 (3)	Mo3-O3	2.042 (3)
$\mathrm{Ca}-\mathrm{O} 1^{\text {ii }}$	2.421 (3)	$\mathrm{Mo3}-\mathrm{O}^{\text {viii }}$	2.057 (3)
$\mathrm{Ca}-\mathrm{O} 4{ }^{\text {iii }}$	2.481 (3)	$\mathrm{Mo3}-\mathrm{O} 4^{\text {vii }}$	2.068 (3)
$\mathrm{Ca}-\mathrm{O} 7^{\text {7i }}$	2.592 (3)	Mo3-O6	2.087 (3)
$\mathrm{Ca}-\mathrm{O}^{\text {iv }}$	2.647 (3)	Mo3-O8	2.145 (3)
$\mathrm{Ca}-\mathrm{O}^{\text {v }}$	2.662 (3)	Mo3-Mo4 ${ }^{\text {xi }}$	2.5943 (19)
$\mathrm{Ca}-\mathrm{O}^{2}$	2.689 (3)	Mo3-Mo5 ${ }^{\text {xii }}$	2.6957 (12)
$\mathrm{Ca}-\mathrm{OB}^{\text {iii }}$	2.874 (3)	Mo3-Mo5	2.7541 (13)
$\mathrm{Ca}-\mathrm{O}^{\text {vi }}$	3.018 (3)	Mo3-Mo1 ${ }^{\text {ix }}$	2.7625 (13)
$\mathrm{Ca}-\mathrm{O}^{\text {iii }}$	3.035 (3)	Mo3-Mo2	2.8250 (17)
Mo1-O5 ${ }^{\text {vii }}$	2.028 (3)	$\mathrm{Mo} 4-\mathrm{O3}^{\text {x }}$	2.052 (3)
$\mathrm{Mo} 1-\mathrm{O} 7^{\text {viii }}$	2.041 (3)	Mo4-O7 ${ }^{\text {viii }}$	2.063 (3)
$\mathrm{Mo} 1-\mathrm{Or}^{\text {ix }}$	2.106 (3)	Mo4-O5	2.064 (3)
$\mathrm{Mo} 1-\mathrm{O} 4^{\text {vii }}$	2.111 (3)	$\mathrm{Mo4-O} 1^{\text {ix }}$	2.074 (3)
Mo1-O8	2.122 (3)	$\mathrm{Mo} 4-\mathrm{O} 2^{\text {xiii }}$	2.091 (3)
Mo1-Mo2 ${ }^{\text {ix }}$	2.6830 (11)	Mo4-Mo3 ${ }^{\text {x }}$	2.5943 (19)
Mo1-Mo4	2.7587 (14)	Mo4-Mo5 ${ }^{\text {x }}$	2.7229 (16)
Mo1-Mo3 ${ }^{\text {ix }}$	2.7625 (13)	Mo4-Mo2 ${ }^{\text {ix }}$	2.7373 (12)
Mo1-Mo5 ${ }^{\text {x }}$	2.765 (2)	Mo4-Mo1	2.7587 (14)
Mo1-Mo1 ${ }^{\text {ix }}$	2.7669 (13)	Mo4-Mos ${ }^{\text {ix }}$	2.7653 (13)
Mo1-Mo2	3.0343 (15)	Mo5-O5 ${ }^{\text {xiv }}$	2.021 (3)
Mo1-Mo3	3.078 (2)	Mo5-O6 ${ }^{\text {vii }}$	2.022 (3)
Mo2-O1	1.915 (3)	Mo5-O3 ${ }^{\text {xii }}$	2.063 (3)
$\mathrm{Mo} 2-\mathrm{Ob}^{\text {vii }}$	1.948 (3)	$\mathrm{Mo5-O} 2^{\text {viii }}$	2.071 (3)
$\mathrm{Mo} 2-\mathrm{O} 4^{\text {vii }}$	2.047 (3)	Mo5-Mo3 ${ }^{\text {xii }}$	2.6957 (12)
$\mathrm{Mo} 2-\mathrm{O} 8^{\text {ix }}$	2.100 (3)	Mo5-Mo2	2.715 (2)
Mo2-O7	2.117 (3)	Mo5-Mo4 ${ }^{\text {xi }}$	2.7229 (16)
Mo2-Mo1 ${ }^{\text {ix }}$	2.6830 (11)	Mo5-Mo3	2.7541 (13)
Mo2-Mo5	2.715 (2)	Mo5-Mo4 ${ }^{\text {ix }}$	2.7653 (13)
Mo2-Mo4 ${ }^{\text {ix }}$	2.7373 (12)	Mo5-Mo1 ${ }^{\text {xi }}$	2.765 (2)
Mo2-Mo3	2.8250 (17)	Mo5-Mo5 ${ }^{\text {xii }}$	2.8288 (12)

Symmetry codes: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (ii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vi) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vii) $x,-\frac{1}{2}-y, \frac{1}{2}+z$; (viii) $x,-\frac{1}{2}-y, z-\frac{1}{2}$; (ix) $1-x,-y, 1-z$; (x) $1+x, y, z$; (xi) $x-1, y, z$; (xii) $-x,-y, 1-z$; (xiii) $1+x,-\frac{1}{2}-y, z-\frac{1}{2}$; (xiv) $x-1,-\frac{1}{2}-y, \frac{1}{2}+z$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick,
1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

References

Bergerhoff, G. (1996). DIAMOND. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
Dronskowski, R. \& Simon, A. (1989). Angew. Chem. Int. Ed. Engl. 6, 758-760. Dronskowski, R., Simon, A. \& Mertin, W. (1991). Z. Anorg. Allg. Chem. 602, 49-63.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gall, P. (1993). Thesis, University of Rennes, France.
Gall, P. \& Gougeon, P. (1994). Acta Cryst. C50, 7-9.
Gougeon, P., Potel, M. \& Sergent, M. (1990). Acta Cryst. C46, 1188-1190.
North, A. C. T., Phillips, D. C. \& Mathews F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
Steiner, U. \& Reichelt, W. (1997). Z. Naturforsch. Teil B, 52, 1169-1174.
Torardi, C. C. \& McCarley, R. E. (1981). J. Solid State Chem. 37, 393-397.

