Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

P. Gougeon* and P. Gall

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA CNRS No. 6511, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France

Correspondence e-mail: patrick.gougeon@univ-rennes1.fr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{Mo-O}) = 0.003 \text{ Å}$ R factor = 0.031 wR factor = 0.073 Data-to-parameter ratio = 31.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

CaMo₅O₈

 $CaMo_5O_8$ (calcium pentamolybdenum octaoxide) crystallizes in the space group $P2_1/c$ and belongs to the LaMo₅O₈ structure type. Its crystal structure consists of $Mo_{10}O_{18}$ cluster units, interconnected through Mo–Mo bonds of 2.7669 Å to form infinite molybdenum oxide chains. These are interconnected through Mo–O–Mo bonds to create four-sided channels, in which the Ca²⁺ cations are located.

Comment

Among the reduced molybdenum oxides, the AMo_5O_8 (A = Ca, Sr, Pb, Sn, Eu, La, Ce, Pr, Nd, Sm and Gd) compounds constitute an interesting family, because they can tolerate a change in the number of electrons available for Mo-Mo bonding (often called metal-centred electrons or MCE), induced by the valence of the A cation, without a significant change in the basic structure. Consequently, various electrical behaviours are observed as a function of the MCE. If we exclude the Ca compound, all other compounds were obtained as single crystals that allowed studies of the variation of the Mo-Mo and Mo-O distances with respect to the size of the cation and the MCE. CaMo₅O₈ was first mentioned by Torardi & McCarley (1981) and the structure was refined using powder data by Steiner & Reichelt (1997). Comparison of various interatomic distances found in CaMo₅O₈ by Steiner & Reichelt (1997) with those of the compounds AMo_5O_8 with divalent A elements, the structures of which were determined

Figure 1

Fragment of a bioctahedral cluster chain of $CaMo_5O_8$. Displacement ellipsoids are drawn at the 97% probability level. Mo-Mo bonds longer than 2.9 Å are not shown.

Received 14 May 2002 Accepted 10 June 2002 Online 29 June 2002

© 2002 International Union of Crystallography

Printed in Great Britain - all rights reserved

from single-crystal data, showed large differences. In particular, unexpected Mo–O distances up to 2.4 Å are observed, leading to a mean value of 2.087 Å, inconsistent with the values of 2.062, 2.064 and 2.061 Å found in $SrMo_5O_8$, $SnMo_5O_8$ and $PbMo_5O_8$, respectively. On the other hand, an overall displacement parameter was used in their refinement. Consequently, we found it necessary to refine the structure of CaMo₅O₈ from single-crystal data. Our model presents s.u. values about ten times lower for the bonds and all atoms were refined anisotropically. Contrary to the results of Steiner & Reichelt (1997), our results agree perfectly well with the previous refinements made on single crystals of SrMo₅O₈ (Gall & Gougeon, 1994), SnMo₅O₈ (Gougeon et al., 1990) and PbMo₅O₈ (Dronskowski & Simon, 1989; Dronskowski et al., 1991). Thus, the various Mo-O distances are now similar to those of SrMo₅O₈, SnMo₅O₈ and PbMo₅O₈, with an average value of 2.061 Å. The Mo-Mo distances are also close to those reported for SrMo₅O₈. This corroborates previous studies that show that the size of the cation has little effect on the Mo-Mo bonds for a given MCE (Gall, 1993). The intercluster Mo1-Mo1 distance which reflects the MCE is now 2.7669 (13) Å and thus close to the value of 2.7651 (9) Å observed in SrMo₅O₈ (Gall & Gougeon, 1994), instead of 2.81 (1) Å for the model of Steiner & Reichelt (1997).

Experimental

Single crystals were obtained by heating a stoichiometric mixture of starting materials $CaMoO_4$, MoO_3 and Mo in a sealed molybdenum crucible at *ca* 2220 K for 15 min. The crucible was then cooled at a rate of 100 K h⁻¹ to 1300 K and finally furnace-cooled to room temperature.

Crystal data

```
CaMo<sub>5</sub>O<sub>8</sub>

M_r = 647.78

Monoclinic, P2_1/c

a = 7.550 (5) Å

b = 9.068 (5) Å

c = 9.983 (5) Å

\beta = 110.07 (4)°

V = 642.0 (6) Å<sup>3</sup>

Z = 4
```

Data collection

Enraf-Nonius CAD-4 diffractometer θ -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.755$, $T_{max} = 1.00$ 4174 measured reflections 3965 independent reflections 2812 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.073$ S = 1.053965 reflections 128 parameters

Table 1

Selected interatomic distances (Å).

Ca-O1 ⁱ	2.394 (3)	Mo3-O3	2.042 (3)
Ca—O1 ⁱⁱ	2.421 (3)	Mo3-O2 ^{viii}	2.057 (3)
Ca-O4 ⁱⁱⁱ	2.481 (3)	Mo3–O4 ^{vii}	2.068 (3)
Ca-O7 ⁱⁱ	2.592 (3)	Mo3-O6	2.087 (3)
Ca-O5 ^{iv}	2.647 (3)	Mo3-O8	2.145 (3)
Ca-O3 ^v	2.662 (3)	Mo3-Mo4 ^{xi}	2.5943 (19)
Ca-O2 ⁱ	2.689 (3)	Mo3-Mo5 ^{xii}	2.6957 (12)
Ca-O8 ⁱⁱⁱ	2.874 (3)	Mo3-Mo5	2.7541 (13)
Ca-O2 ^{vi}	3.018 (3)	Mo3-Mo1 ^{ix}	2.7625 (13)
Ca-O6 ⁱⁱⁱ	3.035 (3)	Mo3-Mo2	2.8250 (17)
Mo1-O5 ^{vii}	2.028 (3)	Mo4–O3 ^x	2.052 (3)
Mo1-O7 ^{viii}	2.041 (3)	Mo4–O7 ^{viii}	2.063 (3)
Mo1-O8 ^{ix}	2.106 (3)	Mo4-O5	2.064 (3)
Mo1-O4 ^{vii}	2.111 (3)	Mo4-O1 ^{ix}	2.074 (3)
Mo1-O8	2.122 (3)	Mo4–O2 ^{xiii}	2.091 (3)
Mo1-Mo2 ^{ix}	2.6830 (11)	Mo4-Mo3 ^x	2.5943 (19)
Mo1-Mo4	2.7587 (14)	Mo4-Mo5 ^x	2.7229 (16)
Mo1–Mo3 ^{ix}	2.7625 (13)	Mo4–Mo2 ^{ix}	2.7373 (12)
Mo1-Mo5 ^x	2.765 (2)	Mo4-Mo1	2.7587 (14)
Mo1-Mo1 ^{ix}	2.7669 (13)	Mo4–Mo5 ^{ix}	2.7653 (13)
Mo1-Mo2	3.0343 (15)	Mo5–O5 ^{xiv}	2.021 (3)
Mo1-Mo3	3.078 (2)	Mo5–O6 ^{vii}	2.022 (3)
Mo2-O1	1.915 (3)	Mo5–O3 ^{xii}	2.063 (3)
Mo2–O6 ^{vii}	1.948 (3)	Mo5-O2 ^{viii}	2.071 (3)
Mo2–O4 ^{vii}	2.047 (3)	Mo5-Mo3 ^{xii}	2.6957 (12)
Mo2–O8 ^{ix}	2.100 (3)	Mo5-Mo2	2.715 (2)
Mo2-O7	2.117 (3)	Mo5-Mo4 ^{xi}	2.7229 (16)
Mo2-Mo1 ^{ix}	2.6830 (11)	Mo5-Mo3	2.7541 (13)
Mo2-Mo5	2.715 (2)	Mo5-Mo4 ^{ix}	2.7653 (13)
Mo2–Mo4 ^{ix}	2.7373 (12)	Mo5-Mo1 ^{xi}	2.765 (2)
Mo2-Mo3	2.8250 (17)	Mo5-Mo5 ^{xii}	2.8288 (12)

 $D_x = 6.702 \text{ Mg m}^{-3}$

Cell parameters from 25

Mo $K\alpha$ radiation

reflections

 $\mu = 10.31 \text{ mm}^{-1}$

T = 293 (2) K

 $\begin{aligned} R_{\rm int} &= 0.025\\ \theta_{\rm max} &= 39.9^\circ\\ h &= 0 \rightarrow 13 \end{aligned}$

 $k=0\rightarrow 16$

 $l = -18 \rightarrow 16$

3 standard reflections

frequency: 60 min

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0301P)^2$

where $P = (F_o^2 + 2F_c^2)/3$

Extinction correction: *SHELXL*97 Extinction coefficient: 0.00189 (13)

+ 0.82P]

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.99 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -2.44 \text{ e} \text{ Å}^{-3}$

Irregular, black 0.12 \times 0.11 \times 0.08 mm

 $\theta = 8.3 - 16.1^{\circ}$

Symmetry codes: (i) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (ii) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iii) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (iv) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (v) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; (vii) $x, -\frac{1}{2} - y, \frac{1}{2} + z$; (viii) $x, -\frac{1}{2} - y, \frac{1}{2} + z$; (viii) $x, -\frac{1}{2} - y, z - \frac{1}{2}$; (ix) 1 - x, -y, 1 - z; (x) 1 + x, y, z; (xi) x - 1, y, z; (xii) -x, -y, 1 - z; (xiii) $1 + x, -\frac{1}{2} - y, z - \frac{1}{2}$; (xiv) $x - 1, -\frac{1}{2} - y, \frac{1}{2} + z$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *WinGX* (Farrugia, 1999); program(s) used to solve structure: *SHELXS*97 (Sheldrick,

1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Bergerhoff, 1996); software used to prepare material for publication: *SHELXL*97.

References

Bergerhoff, G. (1996). *DIAMOND*. Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.

Dronskowski, R. & Simon, A. (1989). Angew. Chem. Int. Ed. Engl. 6, 758–760.
Dronskowski, R., Simon, A. & Mertin, W. (1991). Z. Anorg. Allg. Chem. 602, 49–63.

- Enraf-Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gall, P. (1993). Thesis, University of Rennes, France.
- Gall, P. & Gougeon, P. (1994). Acta Cryst. C50, 7-9.
- Gougeon, P., Potel, M. & Sergent, M. (1990). Acta Cryst. C46, 1188-1190.
- North, A. C. T., Phillips, D. C. & Mathews F. S. (1968). Acta Cryst. A24, 351-
- 359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.
- Steiner, U. & Reichelt, W. (1997). Z. Naturforsch. Teil B, 52, 1169-1174.
- Torardi, C. C. & McCarley, R. E. (1981). J. Solid State Chem. 37, 393-397.